
NASA-CR-203073

NASA/WVU Software IV & V Facility

Software Research Laboratory

Technical Report Series

NASA-IVV-96-004

WVU-SRL-96-004

WVU-SCS-TR-96-13

CERC-TR-RN-96-008

,...>6? I_'/

The Applicability ,.)f Proposed Object-Oriented Metrics to

Developer Feedback in Time to lmpactDevelopment

by -P,a:Iph t.,.'-"Nea_

National Aeronautics and Space Administration

West Virginia University



According to the terms of Cooperative Agreement #NCCW-0040,

the following approval is granted for distribution of this technical

report outside the NASA/WVU Software Research Laboratory

" (_o_- abol_'sh- -'-Date

Man.r, Software Engineering

John R. Callahan Date

WVU Principal Investigator



The Applicability of Proposed Object-Oriented Metrics

to Developer Feedback in Time to Impact Development

Ralph D. (Butch) Neal

NASA Software IV&V Facility

West Virginia University

Abstract

This paper looks closely at each of the software

metrics generated by the McCabe Object-Oriented

Tool TM and its ability to convey timely

information to developers. The metrics are

examined for meaningfulness in terms of the scale

assignable to the metric by the rules of

measurement theory and the software dimension

being measured. Recon_nendations are made as to

the proper use of each metric and its ability to

influence development at an early stage. The

metrics of the McCabe Object-Oriented Tool TM set

were selected because of the tool's use in a

couple of NASA IV&V projects.

Ralph D. (Butch) Neal

Concurrent Engineering Research Center

NASA/WVU Software IV&V Facility

i00 University Drive

Fairmont, WV 26554

Phone :

Fax:

e-mail :

w-ww:

304 367-8355

304 367-8211

rneal@cerc.wvu.edu

http://research.ivv.nasa.gov/-rneal



The Applicability of Proposed Object Oriented Metrics

to Developer Feedback in Time to Impact Development

Abstract

This paper looks closely at each of the software

metrics generated by the McCabe Object-0riented

Tool TM and its ability to convey timely

information to developers. The metrics are

examined for meaningfulness in terms of the scale

assignable to the metric by the rules of

measurement theory and the software dimension

being measured. Recommendations are made as to the

proper use of each metric and its ability to

influence development at an early stage.

1. Introduction

The proper function of independent verification and

validation (IV&V) is the timely feedback into the

development process of possible as well as actual problems.

One mechanism for recognizing problems is measurement of

leading indicators. Software measure_nent is too new to have

empirically tested and verified measures that predict future

problems. However, the discipline has started to design

metrics that can be used in empirical experiments that will

result in a valid suite of prediction measures.

The dangers of randomly (or carelessly) selecting

predictor variables to include in statistical processes in

an attempt to show causality are well known, e.g., things

like, the Democrats always win the Presidency when the

American League wins the World Series. However, the same

sort of practice has been accepted in the software

engineering community. Metrics are accepted as predictors

with little or no theoretical validation. Fenton [1991]

warns against accepting metrics as valid in the wide sense

(valid as predictors) without validating them in the narrow

sense (valid theoretical underpinnings). Following the lead

of Fenton, we will refer to unvalidated measurements as

metrics. A metric becomes a measure when it has been

validated to actually measure some dimension of the

software. Metrics which may be useful but cannot be

validated as measures are called red light indicators.

The metrics of the McCabe Object-Oriented Tool TM set

were selected because of the tool's use in a couple of NASA

IV&V projects.



2. Background

2.1. Measurement Theory

Mathematical (and statistical) operations always can be

performed on metrics. The question is, do the results make

meaningful statements about the objects being measured?

[Roberts, 1979]

When groups of objects are measured on the nominal

scale: many statistics can not be used; the mode is the only

meaningful measure of centrality. When groups of objects

are measured on the ordinal scale: rank order statistics and

non-parametric statistics can be used (assuming that the

necessary probability distribution can be reasonably assumed

to be present); the median is the most powerful meaningful

measure of centrality. When groups of objects are measured

on the interval scale: parametric statistics as well as all

statistics that apply to ordinal scales can be used (it must

be reasonable to accept that the necessary probability

distribution is present); the arithmetic mean is the most

powerful meaningful measure of centrality. When groups of

objects are measured on the ratio scale: percentage

calculations as well as all statistics that apply to

interval scales can be used; the arithmetic mean is the most

powerful meaningful measure of centrality.

2.2. Object-Oriented Paradigm

Authors have not been in agreement about the

characteristics that identify the object-oriented approach.

Henderson-Sellers [1991] listed information hiding,

encapsulation, objects, classification, classes,

abstraction, inheritance, polymorphism, dynamic binding,

persistence, and composition as having been chosen by at

least one author as a defining aspect of object-orientation.

Rumbaugh, et al. [1991] added identity, Smith [1991] added

single type and Sully [1993] added the unit building block

to this list of defining aspects.

The old software metrics do not take these new concepts

into consideration. Therefore, these characteristics

necessitate the advent of new metrics to measure object-

oriented software. We must find measures for modularity,

cohesiveness, abstraction, polymorphism, data control, and

inheritance to compliment the legacy measures for size,

psychological complexity, and structural complexity.

2.3. Impact

The earlier a potential problem can be brought to the

attention of the developer, the cheaper is the cost of



fixing the problem [Boehm, 1981]. In order to assist the
developer, measurements must be attainable from requirements
or design documents.

3. The metrics

The McCabe Object Oriented Tool _ generates sixteen

metrics. We'll look at each of these metrics and determine

its usefulness in alerting developers to potential problems.

3.1. Average v(G) -- v(G) [McCabe, 1976]

The Average v(G) is the average cyclomatic complexity

of the methods in a class. The v(G) of a method is the

number of independent paths through the method. In

structured methods, v(G) = the number of decision nodes plus

one. Average v(G) is offered as a measure of structural

complexity. V(G) only can be used as an ordinal scale

[Zuse, 1990]. The most meaningful measure of centrality for

a measure that defines an ordinal scale is the median, i.e.,

measures that define an ordinal scale cannot be used to

calculate means (a measure on an ordinal scale cannot be

summed). Average has many definitions. If the _average" in

average v(G) is the median, then this measurement would be

theoretically correct. However, v(G) is still of dubious

value for small classes. If the "average" in average v(G)

is the mean, this measurement is theoretically meaningless.

In software development, it is often the legitimate outlier

that we want to identify. Therefore, a theoretically better

measure is Maximum v(G) of a class. Maximum v(G) allows

development effort to be concentrated on the most complex

method instead of spread out across the entire class. V(G)

might prove to be of value in predicting maintenance effort

required for individual methods but the Average v(G) is not

informative for developer feedback.

3.2. Coupling Between Objects (CBO) [Chidamber and Kemerer,

1994]

CBO is a count of the number of distinct noninheritance

related classes on which the measured class depends. CBO is

presented by the authors as a measure of reusability. As

reusability increases, CBO decreases. CBO can only be used

as an ordinal scale [Neal, 1996]. According to Chidamber

and Kemerer, I) excessive coupling among object classes can

hinder reuse through the deterioration of modular design, 2)

the greater the degree of coupling the more sensitivity to

changes in other parts of the program. CB0 may be an

indicator of inter-object complexity. While averages cannot

be taken, individual measures may be used to trigger further



study of an individual class' modularity. There are no
baseline studies to indicate where the cut-off point might

be between acceptable coupling and unacceptable coupling.

The best use of the ordinal measure might be realized by

comparing the classes of a system to each other. At least

as an initial cut, this metric could be fed back to

developers as an indicator that individual classes should be

investigated as to the degree of independence.

3.3. Depth of Inheritance Tree (DIT) [Chidamber and Kemerer,

1994]

Depth is the level of a class within its inheritance

tree. DIT is presented as a measure of complexity. In the

light of measurement theory, DIT does not meet the

requirements of even the ordinal scale [Neal, 1996]. DIT is

a surrogate for the number of ancestor classes that could

affect a class. However, DITs within a given project often

cluster around one level and thus fail to discriminate from

one class to another. However, the theoretical failings of

this metric do not mean that it cannot be a useful

indicator. Precisely because the values of DIT tend to

cluster around very small integer numbers, outliers show a

cause for concern. There are no baseline studies to

indicate the cut-off point for depth of inheritance. The

best use of DIT is to compare each class' value to the

values of all other classes. Any class which falls well

above the mode value should be investigated for over-design.

This metric could be fed back to developers as a red flag

that individual classes should be investigated as to the

degree of design complexity.

3.4. Fan In (FI) [Henry and Kafura, 1981]

FI is the count of the parents of a class. McCabe

offers FI as a measure of the complexity of the class

brought about by multiple inheritance. However, FI cannot

be accepted as an ordinal scale of complexity [Neal, 1996].

Again, the theoretical failings of this metric do not mean

that it cannot be a useful indicator. A high FI may be an

indicator of possible design flaws. McCabe recommends a

threshold of two for this metric. At least until empirical

evidence is available to indicate otherwise, this metric

could be fed back to developers as an indicator that

individual classes should be investigated as to class

design.

4



3.5. Lack of Cohesion of Methods (LCOM) [Chirr and

Kemerer, 1994]

The definition given by McCabe is not the same as the

definition given by Chidamber and Kemerer. The original has

an artificial floor (zero) which keeps it from being very

useful. McCabe describes the metric as: 100 minus the class

mean of the percentage of methods using each variable. One

need not calculate the percentages for each variable but can

count all variables across all classes, multiply by 100, and

divide by ((the number of individual variables) times (the

number of classes)) and finally subtract from i00.

LCOM is presented by Chidamber and Kemerer as a measure

of cohesiveness of methods within a class. Is this metric a

measure or an indicator? Its unclear at this point.

Proportions are ratio scales [Roberts, 1976]. Therefore,

means of proportions should be ratio scales. Thus LCOM as

defined by McCabe would fit the definition of a ratio scale

and be considered a measure of lack of cohesion. I believe

that this metric may be useful in the long run. Empirical

tests are needed to know for sure. In the short term, it

may be difficult to decide what value signifies the break

between cohesive classes and uncohesive classes. It may

also be difficult to obtain the counts in time to impact the

development effort.

3.6. Max ev(G) -- ev(G) [McCabe, 1976]

Max ev(G) is the v(G) of a flowgraph measured after

subroutines have been reduced to single nodes. The ev(G) of

a structured program is one. In less structured programs,

ev(G) takes on larger numbers. In object-oriented programs,

ev(G) is calculated for each method. McCabe defines max

ev(G) as the sum of the maximum essential complexity of each

class in a system divided by the number of classes. Max

ev(G) is a measure of structural complexity. According to

the rules of measurement theory, ev(G) is an ordinal scale

and therefore not additive [Zuse, 1990].

As an ordinal scale, the maximum ev(G) for individual

classes is meaningful. The maximum ev(G) of individual

classes would be a very informative measure. The developer

needs to spot outliers. Averaging all classes together

hides these outliers. So, average Max ev(G) is not useful

to the developer and should not be used for feedback to

development teams but maximum ev(G) for each class is useful

and could be used as feedback to development teams.



3.7. Max v(G) -- v(G) [XcCabe, 1976]

The v(G) of a program is the number of independent

paths through the program. In structured programs, v(G)

equals the number of decision nodes plus one. In object-

oriented programs, v(G) is calculated for each method.

McCabe defines max v(G) as the sum of the maximum cyclomatic

complexity of each class in a system divided by the number

of classes. Max v(G) is presented as a measure of

structural complexity. According to the rules of

measurement theory, v(G) is an ordinal scale and therefore

is not additive [Zuse, 1990].

As an ordinal scale, the maximum v(G) for individual

classes is meaningful. The maximum v(G) of individual

classes would be a very informative measure since the

developer needs to spot outliers. Averaging all classes

together hides these outliers. So, average Max v(G) is not

useful to the developer and should not be used for feedback

to development teams but maximum v(G) for each class is

useful and could be used as feedback to development teams.

See also metric #i.

3.8. Number of Children (NOC) [Chidamber and Kemerer, 1991]

NOC is the count of the immediate subclasses of a

class. NOC is a surrogate for the number of classes that

might inherit methods from a parent. According to Chidamber

and Kemerer, I) the greater the number of children, the

greater the inheritance and 2) the more children a parent

class has, the greater the potential for improper

abstraction of the parent class. NOC is presented by

Chidamber and Kemerer as a measure of complexity.

Based on measurement theory validation, NOC may be used

as an ordinal scale of psychological complexity

(understandability) [Neal, 1996], i.e., the

understandability of a class may well be related to the

number of immediate subclasses. Furthermore, there may be a

maximum N0C above which a class should be reviewed for the

misuse of subclassing. This metric could be fed back to

developers as a red flag that parent classes and their

children classes should be investigated as to the degree of

abstraction. Empirical evidence is needed to determine the

long run usefulness of this measure.

3.9. Percent Overloaded Calls (POC) [unattributed]

POC is the percentage of calls that are made to

overloaded modules. According to McCabe, this is a measure

of the generality of the system, i.e., the higher this

metric the more reusable the objects of the system. There

6



is no empirical evidence to substantiate McCabe's claim.
However, percentages are ratio scales [Roberts, 1976]. Ratio
scales are the most powerful scales. Thus, POC would seem to
be a good metric for the design team. This metric should be

reevaluated when we have empirical data to study.

3.10. Percent Public/Protected (PP/P) [unattributed]

PP/P is the percentage of PUBLIC and PROTECTED data in

a class that is directly accessible to objects or functions

of the class. According to McCabe, this is a measure of the

lack of encapsulation of the data, i.e., the higher this

metric the less control each class has of the data in the

class. There is no empirical evidence to substantiate

McCabe's claim. However, percentages are ratio scales

[Roberts, 1976]. Ratio scales are the most powerful scales.

Thus, PP/P would seem to be a good metric for the design

team. This metric should be reevaluated when we have

empirical data to study.

3.11. Access to Public Data (APD) [unattributed]

APD is the count of the number of times that a class's

PUBLIC and PROTECTED data is accessed by other classes. This

metric, along with the previous metric, would seem to be a

measure of data control. Studies of other counts have shown

inter-class measures to be ordinal scales [Neal, 1996].

A high APD indicates that a larger segment of the

system may be affected when changes are made than would be

necessary if the data were PRIVATE. This metric should be

fed back to developers so that the classes can be ranked by

the degree of data control. This allows the classes to be

investigated in descending order of rank. By taking the

classes in descending order of rank, the worst classes

receive the most and fastest attention. Metrics P/PP and

APD seem to work together to analyze data design.

3.12. Quality [unattributed]

Quality (a misnomer if I ever saw one) is defined by

McCabe as the number of classes dependent on descendants.

Properly designed classes should not access their

descendants, e.g., their children. Properly designed

classes access only their ancestors, e.g., their parent(s).

Therefore, this metric is an attempt to measure design.

However, this metric is more correctly defined as a switch

rather than a measure. Since properly designed classes

never access their children, the switch of the metric from

zero to one causes the developer to be alerted to possible

design problems. This metric could be fed back to



developers as an indicator that classes are accessing their
descendant (children) classes and therefore should be
investigated for design faults.

3.13. Response for a Class (RFC) [Chidamber and Kemerer,

1991]

RFC is a count of inherited methods plus a count of the

unique outside methods invoked by the measured class, i.e.,

if an outside method is invoked more than once it is none-

the-less counted only once. This metric has been proposed

as a surrogate for the potential communication between the

class and other classes and as such a measure of complexity.

If understandability (psychological complexity) is the

complexity being measured, and one accepts that once a
method is understood, overall understandability does not

vary with the number of times the method is invoked, then

RFC could be accepted as an ordinal scale [Neal, 1996].

However, if structural complexity is being measured, we

cannot accept that complexity remains unchanged when methods

that invoke methods from other classes are added to the

measured class. This is true even if the invoked methods

are already being invoked by another method in the measured

class. What this all means is, RFC is not a good measure of

structural complexity but may be a good measure of

understandability. RFC cannot be summed across classes nor

can averages of RFC be calculated other than average in the

sense of taking the median [Neal, 1996]. However, RFC does

allow the developer to rank classes in order of complexity

in the sense of understandability. At least as an initial

cut, this metric could be fed back to developers to indicate

what classes should be investigated first as to possible

problems of psychological complexity. By taking the classes
in order of complexity, the worst classes receive the most

and fastest attention.

3.14. Number of Roots (NOR) [unattrlbuted]

NOR is a count of the distinct class hierarchies

utilized by a program. According to McCabe, this is a

measure of the lack of inheritance, i.e., a higher NOR

indicates that advantage is not being taken of similarities

between classes. There is no empirical evidence to

substantiate McCabe's claim. Is a program made up of fifty

classes with a NOR of ten more guilty of ignoring

inheritance than a program with ten classes and a NOR of

five? We really don't know. There is no indication in NOR

of the relative size of the program. This ambiguity keeps

NOR from being a measure of the lack of inheritance. The

theoretical failings of this metric do not mean that it

cannot be a useful indicator. A high NOR may be an

indicator of possible design flaws. McCabe recommends

8



that NOR be used with DIT to evaluate a program. If DIT is

low (the hierarchy chart is shallow) and NOR is high (the

hierarchy chart is wide) it may indicate that similarities

between classes are not being exploited. This metric could

be fed back to developers as an indicator that programs with

relatively high NOR should be investigated as to class

design but NOR should be reevaluated when we have empirical

data to study.

3.15. Sum v(G) [McCabe, 1976]

Sum v(G) is the sum of the cyclomatic complexities of

the methods within a class. V(G) can be used only as an

ordinal scale [Zuse, 1990]. Therefore, according to the

rules of measurement theory, v(G) is not additive [Zuse,

1990]. See also metrics #i and #7.

3.16. Weighted Methods per Class (WMC) [Chidamber and

Kemerer, 1994]

WMC is the sum of weighted methods in a class, i.e.,

each method within the class is weighted by some sort of

complexity metric and this weight is sun, ned to arrive at

WMC. WMC is presented by the authors as a measure of

complexity. The problem with WMC, as proposed by Chidamber

and Kemerer, is that the complexity metric is not defined

other than to say that it should have the properties of the

interval scale. The hard part might be finding such

metrics. Zuse [1990] validated 98 complexity metrics for

type of scale but chose not to validate any of them for the

interval scale because of the difficulty of proof. Chidamber

and Kemerer avoid the issue by showing in their example that

complexity of each method can be assigned unity and WMC then

becomes a count of the methods within the class. Churcher

and Sheppard [1995] could find no better metric to use than

to take Chidamber and Kemerer's advice and assign unity to

each method. McCabe seems to have done the same. Defined

thus, WMC is an ordinal scale. This metric could be fed

back to developers as a red flag that classes should be

investigated as to the degree of structural complexity or as

an indicator that further decomposition is needed.

4. Summary

The metrics of The McCabe Object-Oriented Metrics

Tool TM are skewed toward the measurement of complexity. The

metrics are also skewed toward the legacy measurements of

preobject-oriented systems. Broken down by assignable scale

(and therefore by the meaningful data that they convey) the

sixteen metrics look like this:

Four of the sixteen metrics cannot be assigned a scale and

therefore are not useful for any type of measurement.



One metric can be used as a switch to alert developers to
possible design problems.

Four metrics are useful indicators of possible problems even
though they cannot be assigned scale. These metrics

are useful for looking for outliers.

Two metrics are ordinal scales but are probably most useful

as indicators. Although non-parametric statistics

could be applied to these metrics, they are probably

best used for rank order statistics.

Two more metrics are ordinal scales and are probably most

useful as ordinal scale, i.e., they can be used for

non-parametric as well as rank order statistics.

Three metrics are ratio scales and can be used for

parametric statistical analysis.

Broken down by the software dimension (modularity, data

control, inheritance, cohesiveness, and data abstraction for

object-oriented programs and size, psychological complexity,

and structural complexity for legacy programs) the metrics

look like this:
One ratio scale each for cohesiveness, data abstraction, and

data control.

One ordinal scale each for data control and psychological

complexity.
Two ordinal scales that are best used as indicators for

psychological complexity.
Three indicators for structural complexity.

One indicator and one switch for modularity.

It is obvious that many of the dimensions of software

are not being measured by this tool while other dimensions

are being over-measured. Measuring a dimension by more than

one method is wasteful of time and resources. Metrics

should be selected to cover as many of the dimensions as the

developer feels is important to the system being developed.

Some dimensions may not need to be measured. Keeping the

measurement to a minimum while covering all of the important

dimensions is the most cost effective approach.

Good object-oriented metrics have yet to be devised,

tested, and proven. But, you have to start somewhere.

i0



Boehm, Barry W., Software Enaineerina Economics, Prentice-

Hall, Englewood Cliffs, New Jersey, 1981.

Chidamber, Shyam R., and Chris F. Kemerer, A Metric Suite

for Object Oriented Design, _EEE Transactions on

Software Enqineerina, Vol. 20, No. 6, June 1994.

Churcher, Neville I., and Martin J. Shepperd, Towards a

Conceptual Framework for Object Oriented Software

Metrics, ACM SIGSOFT Software Enaineerina Notes, Vol.

20, No. 2, April 1995a.

Fenton, Norman, Software Metrics: A Rigorous Approach,

Chapman & Hall, London, UK, 1991.

Henderson-Sellers, B., A Book of Object-Oriented Knowledge,

Prentice Hall, NY, 1992.

Henry, S. and D. Kafura, Software Metrics Based on

Information Flow, IEEE Transactions on Software

Engineering, Vol. 7, No. 5, 1981.

McCabe, T. J., A Complexity Measure, IEEE Transactions on

Software Engineering, Vol. 5, 1976.

Neal, Ralph D., The Validation by Measurement Theory of

Proposed Object-Oriented Metrics, Dissertation,

Virginia Commonwealth University, Richmond, Va., 1996.

Roberts, Fred S., Measurement Theory with Applications to

Decisionmaking, Utility, and the Social Sciences,

Addison-Wesley Publishing Company, Reading

Massachusetts, 1979.

Rumbaugh, James, Michael Blaha, William Premerlani,

Frederick Eddy, and William Lorensen, Qbiect-0riented

MQdelina and Desicrn, Prentice Hall, Englewood Cliffs,

NJ, 1991.

Smith, David N., Concepts of Obiect-Oriented ProQrammina,

McGraw-Hill, NY, 1991.

Sully, Phil, Modelina the World with 0bSects, Prentice Hall,

NY, 1993.

Zuse, Horst, Software Complexity: Measures and Methods,

Walter de Gruyter, Berlin, 1990.

ii


